Proper CQ∗-ternary algebras
نویسنده
چکیده
In this paper, modifying the construction of a C∗-ternary algebra from a given C∗-algebra, we define a proper CQ∗-ternary algebra from a given proper CQ∗-algebra. We investigate homomorphisms in proper CQ∗-ternary algebras and derivations on proper CQ∗-ternary algebras associated with the Cauchy functional inequality ‖f(x) + f(y) + f(z)‖ ≤ ‖f(x+ y + z)‖. We moreover prove the Hyers-Ulam stability of homomorphisms in proper CQ∗-ternary algebras and of derivations on proper CQ∗-ternary algebras associated with the Cauchy functional equation f(x+ y + z) = f(x) + f(y) + f(z). c ©2014 All rights reserved.
منابع مشابه
Isomorphisms and Generalized Derivations in Proper Cq∗-algebras
In this paper, we prove the Hyers-Ulam-Rassias stability of homomorphisms in proper CQ∗-algebras and of generalized derivations on proper CQ∗-algebras for the following Cauchy-Jensen additive mappings: f ( x + y + z 2 ) + f ( x− y + z 2 ) = f(x) + f(z), f ( x + y + z 2 ) − f ( x− y + z 2 ) = f(y), 2f ( x + y + z 2 ) = f(x) + f(y) + f(z), which were introduced and investigated in [3, 30]. This i...
متن کاملLie ternary $(sigma,tau,xi)$--derivations on Banach ternary algebras
Let $A$ be a Banach ternary algebra over a scalar field $Bbb R$ or $Bbb C$ and $X$ be a ternary Banach $A$--module. Let $sigma,tau$ and $xi$ be linear mappings on $A$, a linear mapping $D:(A,[~]_A)to (X,[~]_X)$ is called a Lie ternary $(sigma,tau,xi)$--derivation, if $$D([a,b,c])=[[D(a)bc]_X]_{(sigma,tau,xi)}-[[D(c)ba]_X]_{(sigma,tau,xi)}$$ for all $a,b,cin A$, where $[abc]_{(sigma,tau,xi)}=ata...
متن کاملPerturbations of Jordan higher derivations in Banach ternary algebras : An alternative fixed point approach
Using fixed pointmethods, we investigate approximately higher ternary Jordan derivations in Banach ternaty algebras via the Cauchy functional equation$$f(lambda_{1}x+lambda_{2}y+lambda_3z)=lambda_1f(x)+lambda_2f(y)+lambda_3f(z)~.$$
متن کاملApproximate solutions of homomorphisms and derivations of the generalized Cauchy-Jensen functional equation in $C^*$-ternary algebras
In this paper, we prove Hyers-Ulam-Rassias stability of $C^*$-ternary algebra homomorphism for the following generalized Cauchy-Jensen equation $$eta mu fleft(frac{x+y}{eta}+zright) = f(mu x) + f(mu y) +eta f(mu z)$$ for all $mu in mathbb{S}:= { lambda in mathbb{C} : |lambda | =1}$ and for any fixed positive integer $eta geq 2$ on $C^*$-ternary algebras by using fixed poind alternat...
متن کاملNearly higher ternary derivations in Banach ternary algebras :An alternative fixed point approach
We say a functional equation () is stable if any function g satisfying the equation () approximatelyis near to true solution of (). Using xed point methods, we investigate approximately higherternary derivations in Banach ternary algebras via the Cauchy functional equationf(1x + 2y + 3z) = 1f(x) + 2f(y) + 3f(z) :
متن کامل